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Note 

On a Vortex Sheet Approach to the 
Numerical Calculation of Water Waves 

I. INTRODUCTION 

The past few years have seen considerable progress in the development of 
sophisticated numerical methods for the calculation of plane waves in shallow 
water. Of these, the Stanford University Modified Marker and Cell (SUMMAC) 
Eulerian finite difference method [l] is probably the most highly developed. The 
LINC method [2], based upon a Lagrangian formulation, also appears to be quite 
powerful and promising. 

At the same time there has been continued interest in methods involving expan- 
sions in powers of the vertical distance from the bottom. This procedure permits 
the elimination of the vertical space variable, and hence a reduction to only one 
space variable plus time. It leads to simple wave equations, Airy’s long wave 
theory, or the Korteweg-de Vries theory, depending upon the size of the Ursell 
parameter; these ideas are reviewed and extended by Madsen and Mei [3]. Other 
authors (e.g. [4, 5]), proceeding more formally, have chosen to build upon Airy’s 
model by including the vertical acceleration in various approximate ways. 

The object of the present note is to formulate a rather different line of approach, 
one based upon a vortex-sheet representation of the free surface and the bottom 
boundary [6], and applicable to arbitrarily large, though nonbreaking, inviscid, 
irrotational, incompressible, two-dimensional water waves. The principal advan- 
tage of this “surface” formulation is, again, the accompanying reduction from two 
space dimensions to one, but this time Laplace’s equation on the velocity potential 
is satisfied automatically and exactly. In return for this favor the resulting equa- 
tions are of an integrodifferential character, but this complication can be suppressed 
and the equations integrated in finite time steps. 

II. VORTEX SHEET FORMULATION 

From classical potential theory, the flow within the water can be generated by a 
distribution of circulation on the free surface Y, of lineal density G”(x, t) per 
unit x-length say, together with a distribution G(x, 1) on the bottom, or beneath 
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the bottom if an image system is available, where the x axis coincides with the 
undisturbed free surface and y is measured upwards. Similarly, the flow of air 
above the water, assumed irrotational, can be generated by a distribution of 
vorticity over ,Y. It is more convenient, however, to generate the airflow by a 
distribution Ga(x, t), say, over 9, together with the distribution C(x, t) over the 
bottom, since then the required continuity of the normal velocity across the free 
surface implies that Ga(x, t) = GU’(x, t) = G(x, t), say, so that the singZe vortex 
system, consisting of the combination of G and G, accounts for the flow in both 
the air and water. (Note that G here corresponds to 2nG of [6]). 

Now, with Laplace’s equation on the velocity potential 4, continuity of the 
normal velocity across 9, and the bottom boundary condition all satisfied, it 
remains to compute the vortex density G(x, t) and the free surface height Y(x, t) 
in accordance with the kinematic and dynamic free surface conditions on 9. 

and 

Y, = ZF - p y I or, VW - U"Y$ (1) 

pa = pw 3 p, (2) 

respectively, where subscripts denote partial differentiation, the a, w superscripts 
refer to the air and water, u and u are the X, y velocity components, and the 
effects of surface tension are omitted. Averaging Eqs. (l), we have instead 

Y, = v- UY,, (3) 

where U(x, t) s= (u” + u”9/2 on y = Y, and similarly for V(X, t); U, V may be 
regarded as the components of the “velocity of the free surface vortices.” Besides 
the U, V decomposition, we will also use the tangential and normal components T 
and N (see Fig. 1). 

Fig. 1. Velocity of the free surface vortices. 
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To express (2) in terms of our principal variables G, Y, U, V we start with the 
Bernoulli equation for the air and water sides of Y, 

c@w(x, Y, t) + i[(T i G/2)” + iv] --t gY + pnqx, Y, t /p”,” = .9-J(t), (4) 

where G is the circulation per unit arc length (so that G ds = G dx), g is the accel- 
eration of gravity, pa,‘” are the mass densities of the air and water, Flalw are the 
“Bernoulli constants” for the air and water, and where we have noted that the 
tangential surface velocities of the fluid particles are T T G/2 with the upper and 
lower signs corresponding to the air and water, respectively. The subscripted 3 
denotes differentiation with respect to the third argument; this notation will be 
used whenever a letter subscript is rendered ambiguous by the x and t dependence 
in the Y argument. 

Now, defining p,la[x, Y(x, t), t] = W*“(x, t), we have 

since Y, = S/C and T = UC + VS, where C, S are short for cos(tan-l Y,), 
sin(tan-l Y,), respectively. Similarly, 

so that 

q3," = (bf." + (&1cy, (6) 

+,“a = qw - (V F GSj2) Y, . (7) 

Inserting this into (4), and differencing the equations for water and air, we have 

Qtt~ - c&a - c?SY, + T(? + ((l/p’“) - ( l/pa))p = SW - F”, (8) 

where we have defined payW[x, Y(x, t), t] = p[x, Y(x, t), t] = P(x, t). Finally, if 
we take alax of (8) and note that @;A” = @‘“,;” where @z*” is given by (5), then 
with the help of (3) and the relations G = GC and T = UC + VS, we obtain the 
result 

Gt + (uG>, = (U/pa) - U/P”)) f’z (9) 

To interpret (9) physically, consider the circulation 

TAB(t) = I”““’ G(x, t) dx 
x*(t) 

(10) 

between any two elementary vortices labeled A and B on Y. Leibnitz differentiation 
gives dFA,/dt - dx[G, + (UG),] as x, - xA f dx tends to zero. Comparing this 
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with (9) we see that T,, will be conserved if the fluid densities are equal. Other- 
wise, the term on the right-hand side of (9) can not be expected to be zero, and 
there will be a generation or demise of circulation due to the tangential pressure 
gradient imparting different accelerations to the adjacent fluids by virtue of their 
disparate densities. 

If, as before, we insert (7) into (4), but this time add the equations for air and 
water, and then take a/ax of the result, we obtain 

-2(U + VU,), + (2VY, - U2 - V2 - C2G2/4 - ZgY), = ((l/pa) 7 (l/p”‘)) P,. 
(11) 

Finally, eliminating P, between (9) and (1 I), and noting that C, = -SC2Y,, , 
leads to 

Gt = -;UG), + (K/~)[C%(CSGY,, - G,) 

-4(Ut + UU,) - 4(V;+ (/VT) Y, - 4gY,.], (14 

where K -7 (p’” - p”)/(p’” + p”) and U, V can be given by Biot-Savart integrals 
over the vortex sheet .4c and its image g, say, beneath the bottom. Specifically, 

and (13) 

xl2 + [YCE, t) - yc.x, t)l” 
at, t> - x ’ G(f, t) dt, + r&f, t) - xl” + [F[, t) - ux, t>l” ) 

where &$, t), T(;(5, t) are the coordinates of the image point corresponding to the 
free surface point 6, Y(f, t). 

Our “working equations,” then, are (3) and (12), together with initial conditions 
Y(x, 0) and G(x, 0), and the Biot-Savart relations (13). 

Before discussing the solution of this system of equations in the variables 
G, Y, U, V, we might note the difference between our dynamic boundary condi- 
tion (2) and the customary condition p = 0, which completely ignores the air 
density and is equivalent to setting K = 1 in (12). Of course, p = 0 is generally 
an excellent approximation for the air/water case; it’s just that the vortex model 
automatically involves us with the airflow, so that (2) is more natural here. 
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111. METHOD OF SOLUTION 

Now, the governing Eqs. (3), (12), and (13), are coupled, nonlinear, integrodif- 
ferential equations. Nevertheless, suppose we know G(x, t) and Y(x, t) at some 
instant t. Then we can compute U(X, t) and V(x, t) from (13) and, with the help 
of numerical differentiation, we can also compute Y, , Y,, , U, , P’, , C, and S. 
Thus the right-hand sides of (3) and (12) can be determined, and hence G(x, t + At) 
and Y(x, t + At) are obtained by numerical integration-except for the fact that 
the Ut(x, t) and Vt(x, t) terms needed in (12) are not computable from the initial 
data G(x, t) and Y(x, t). In order to obtain values for U, and V, , we first iterate 
over a very small “virtual” time step St, which is an order of magnitude smaller 
than the “nominal” step size At, as follows: Estimating U, , V, in (12), we integrate 
(3) and (12) (at a discrete set of X’S) from t to t + St using Euler’s method. With 
Y(x, t + St) and G(x, t + St) thus determined, U(x, t + St) and V(x, t + St) are 
computed from (13); comparing these with U(x, t) and V(x, t), we are thus able 
to form improved estimates of Ut(x, t) and Vt(x, t). Repeating our integration 
of (12) using these new estimates, we obtain improved values for G(x, t + St). 
The process is repeated until suitable convergence is attained; i.e., until 
U(x, t) + U,(x, t) 6t and V(x, r) + vt/t(x, t) St are sufficiently close to the Biot- 
Savart computed quantities CI(x, t + 8t) and V(x, t + St), respectively. 

The relatively large At step is accomplished by the more sophisticated Runge- 
Kutta-Merson scheme [6], where the “inner iteration” for Ut , Y, must be carried 
out five times for each At step. 

IV. INITIAL NUMERICAL TEST; SOLITARY WAVE 

Although we are not yet in a position to make a definitive statement regarding 
stability, choice of step size, and so on, we are able to report the results of our 
initial computer runs, for the case of a solitary wave of “intensity” y = wave 
height/undisturbed depth = 0.5. 

To obtain the starting conditions Y(x, 0) and G(x, 0) we first developed 
a five-term McGowan-type expansion [7] for the water flow; this provided us 
with Y and the tangential surface velocity T”‘. However, in computing G as 
(P - Ta) dsjdx we still had to compute the airflow over the wave in order to 
find T”. This was done by means of a suitable distribution of doublets along the 
x axis; details are given in [6]. The resulting Y and G are shown in Fig. 2. Note 
that the tails of G decay rather slowly, only as O(X-~), due to the airflow. That is 
whereas Tw decays exponentially in x, Ta drops off only as O(X-~). 

Thanks to the flat bottom, a simple reflection provided an exact image system. 
With the undisturbed depth h = 1, we selected an x range between -7 and +7 
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FIG. 2. Solitary wave height and vortex density for y = 0.5. 

with 59 x points, i.e., at intervals of 0.25. However, the Biot-Savart integrations 
were carried out from - co to t co, with the tail portions (- co to -7 and +7 
to + co) done approximately and analytically by extrapolating G according to its 
known O(X-~) behavior. The nominal time steps dt were chosen to correspond to a 
wave movement of 0.25, and the crest was initially offset at x = - 1.5. The program 
was run for 14 such steps (on the BRLESC machine at Aberdeen Research and 
Development Center, machine time being about 13 min), at which point the wave 
crest was at x = 2. The final wave shape is plotted in Fig. 2, and coincides with 
the initial shape; the discrepancy of 0.001 between initial and final wave heights, 
for example, is not observable in the plot. We terminated the calculation after 
only this modest amount of travel because the Biot-Savart tail integrations for 
7 < x < cc become increasingly suspect as the crest approaches x = 7. 

We also can another case, a solitary wave running up on a beach, but hesitate 
to document those results here since various additional simplifications introduced 
for the sake of expediency, such as the resort to an approximate image system, 
render those results difficult to assess. In any case, they are available in [6]. 
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